Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 14210, 2022 08 20.
Article in English | MEDLINE | ID: covidwho-2000927

ABSTRACT

Considerable effort has been made to better understand why some people suffer from severe COVID-19 while others remain asymptomatic. This has led to important clinical findings; people with severe COVID-19 generally experience persistently high levels of inflammation, slower viral load decay, display a dysregulated type-I interferon response, have less active natural killer cells and increased levels of neutrophil extracellular traps. How these findings are connected to the pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light on this issue by focusing on cells that trigger inflammation through molecular patterns: infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells producing damage-associated molecular patterns (DAMPs). The former signals the presence of pathogens while the latter signals danger such as hypoxia or lack of nutrients. Analyses show that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP expressing cells and inflammation, identifying the inability to quickly clear PAMPs and DAMPs as the main contributor to hyperinflammation. The model explains clinical findings and reveal conditions that can increase the likelihood of desired clinical outcome from treatment administration. In particular, the analysis suggest that antivirals need to be administered early during infection to have an impact on disease severity. The simplicity of the model and its high level of consistency with clinical findings motivate its use for the formulation of new treatment strategies.


Subject(s)
COVID-19 Drug Treatment , Alarmins , Humans , Inflammation , Pathogen-Associated Molecular Pattern Molecules , SARS-CoV-2 , Severity of Illness Index
2.
J Theor Biol ; 517: 110621, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1114510

ABSTRACT

SARS-CoV-2 rapidly spread from a regional outbreak to a global pandemic in just a few months. Global research efforts have focused on developing effective vaccines against COVID-19. However, some of the basic epidemiological parameters, such as the exponential epidemic growth rate and the basic reproductive number, R0, across geographic areas are still not well quantified. Here, we developed and fit a mathematical model to case and death count data collected from the United States and eight European countries during the early epidemic period before broad control measures were implemented. Results show that the early epidemic grew exponentially at rates between 0.18 and 0.29/day (epidemic doubling times between 2.4 and 3.9 days). We found that for such rapid epidemic growth, high levels of intervention efforts are necessary, no matter the goal is mitigation or containment. We discuss the current estimates of the mean serial interval, and argue that existing evidence suggests that the interval is between 6 and 8 days in the absence of active isolation efforts. Using parameters consistent with this range, we estimated the median R0 value to be 5.8 (confidence interval: 4.7-7.3) in the United States and between 3.6 and 6.1 in the eight European countries. We further analyze how vaccination schedules depend on R0, the duration of protective immunity to SARS-CoV-2, and show that individual-level heterogeneity in vaccine induced immunity can significantly affect vaccination schedules.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19 , Models, Biological , SARS-CoV-2 , Vaccination , COVID-19/epidemiology , COVID-19/prevention & control , Europe/epidemiology , Female , Humans , Male , United States/epidemiology
3.
medRxiv ; 2020 Apr 07.
Article in English | MEDLINE | ID: covidwho-826972

ABSTRACT

The COVID-19 pandemic caused more than 800,000 infections and 40,000 deaths by the end of March 2020. However, some of the basic epidemiological parameters, such as the exponential epidemic growth rate and R0 are debated. We developed an inference approach to control for confounding factors in data collection, such as under-reporting and changes in surveillance intensities, and fitted a mathematical model to infection and death count data collected from eight European countries and the US. In all countries, the early epidemic grew exponentially at rates between 0.19-0.29/day (epidemic doubling times between 2.4-3.7 days). This suggests a highly infectious virus with an R0 likely between 4.0 and 7.1. We show that similar levels of intervention efforts are needed, no matter the goal is mitigation or containment. Early, strong and comprehensive intervention efforts to achieve greater than 74-86% reduction in transmission are necessary.

4.
Emerg Infect Dis ; 26(7): 1470-1477, 2020 07.
Article in English | MEDLINE | ID: covidwho-668858

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 is the causative agent of the ongoing coronavirus disease pandemic. Initial estimates of the early dynamics of the outbreak in Wuhan, China, suggested a doubling time of the number of infected persons of 6-7 days and a basic reproductive number (R0) of 2.2-2.7. We collected extensive individual case reports across China and estimated key epidemiologic parameters, including the incubation period (4.2 days). We then designed 2 mathematical modeling approaches to infer the outbreak dynamics in Wuhan by using high-resolution domestic travel and infection data. Results show that the doubling time early in the epidemic in Wuhan was 2.3-3.3 days. Assuming a serial interval of 6-9 days, we calculated a median R0 value of 5.7 (95% CI 3.8-8.9). We further show that active surveillance, contact tracing, quarantine, and early strong social distancing efforts are needed to stop transmission of the virus.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Basic Reproduction Number , COVID-19 , China/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Humans , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL